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In this paper we discuss the effects of yearly temperature variation on the de-
velopment and seasonal occurrence of poikiliothermic organisms with multiple
life stages. The study of voltinism in the mountain pine beetle (Dendroctonus
ponderosaeHopkins), an important forest insect living in extreme temperature
environments and exhibiting no diapause, provides a motivational example. Us-
ing a minimal model for the rates of aging it is shown that seasonal temperature
variation and minimal stage-specific differences in rates of aging are sufficient to
create stable uni- and multi-voltine oviposition cycles. In fact, these cycles are at-
tracting and therefore provide an exogenous mechanism for synchronizing whole
populations of organisms. Structural stability arguments are used to extend the
results to more general life systems.

c© 2000 Society for Mathematical Biology

1. INTRODUCTION

Maintaining an appropriate seasonality is among the most basic requisites for
poikiliothermic† organisms living in temperate environments. Critical life-history
events must be appropriately timed with seasonal resource abundance. Successful
adaptation to times of seasonal stress (e.g., winter, dry season) also require timing
of a particular life stage to correspond with seasonal environmental cues. In ad-
dition to timing, an adaptive seasonality often requires synchronous occurrence of
specific life stages. Adult mayflies, for example, must simultaneously occur over
∗Author to whom correspondence should be addressed.
†‘Poikiliothermic’ and ‘Exothermic’ are terms we use here to describe organisms whose body tem-

perature is essentially that of their external environment, i.e., ‘cold-blooded’.

0092-8240/00/050977 + 24 $35.00/0 c© 2000 Society for Mathematical Biology
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their ephemeral reproductive life span in order to find mates. In fact, the require-
ment for synchrony is widespread throughout the Class Insecta, with basic fitness
attributes such as successfully overcoming host defenses and predator avoidance
requiring simultaneous occurrence of large numbers of individuals. The two ba-
sic components of seasonality are, therefore, timing and synchrony. Temperature
is the most basic controller of seasonality in poikilothermic organisms (Zaslavski,
1988) and a large body of literature exists relating the effects of temperature to
developmental rates and phenology. These seasonal models typically require some
starting point or ‘biofix’ where all members of the population are approximately
the same age. For insects this biofix has often been the breaking or termination of
diapause.

Diapause is a physiological hibernal state that functions, among other things, to
reset the thermal clock for cold-blooded organisms. Diapause is therefore basic
to maintaining an appropriate seasonality and is widely expressed in terrestrial in-
sects. It has been argued, in fact, that diapause is an early evolutionary adaptation
of insects due to its almost universal expression (Zaslavski, 1988). Some insects,
for example most aquatic species, exhibit no diapause. There are also some terres-
trial species in which diapause is lacking. Maintaining seasonality without some
obvious mechanism to reset the thermal clock has been termed direct control of
seasonality (Danks, 1987). Since maintaining an adaptive seasonality is no less
important for insects under direct temperature control than those with diapause, an
interesting question is: how can adaptive seasonality be maintained without some
physiological mechanism such as diapause?

The goal of this paper is to prove that seasonal temperature swingsaloneare suf-
ficient to establish seasonality in exothermic organisms, without diapause or other
physiological mechanisms to reset the thermal clock. Our work shows that within
realistic parameter regimes uni-, semi- and multi-voltine‡ cycles are possible and
indeed structurally stable. In the first section we will present the basic models for
aging and life stage transition as well as environmental temperature. In the second
section we will illustrate the techniques to be used in an hypothetical two-stage
organism. In the third section we will establish sufficient conditions for the ex-
istence of seasonality inN-stage organisms and discuss the structural stability§

of the voltine cycles. These results will be applied to the mountain pine beetle
(Dendroctonus ponderosaeHopkins, hitherto abbreviated MPB) in the fourth sec-
tion.

‡‘Voltinism’ refers to the number of generations an organism completes per year. Thus, uni-voltine
organisms complete one generation per year, bi-voltine complete two generations per year and so
forth.

§In this context we will take ‘structural stability’ to mean not only persistence of behavior for
parameter changes in some neighborhood but also persistence of behavior within any class of models
imbedding the current model.
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2. THE M ATHEMATICAL M ODEL

The general developmental model for age,a j (t), within the j th life stage of a
poikiliothermic organisms can be written

daj

dt
= Rj (T(t)), a j (t j−1) = 0. (1)

The functionRj (T) is the developmental rate, wheret is time andT(t) is the
temperature at timet . The developmental age varies between 0 and 1, witht j−1

being the time of completion of the( j − 1)st life stage (that is,a j (t j ) = 1). A vast
and growing literature is aimed at modelling and parameterizing the developmental
rates,Rj , for various species as functions of temperature. This is simply because
predicting the time of completion of the final life stage,tN , for anN-stage organism
is such an important applied problem. Formally, one may write the solution fortN

implicitly:

1=
∫ t1

t0

R1(T(t)) dt,

1=
∫ t2

t1

R2(T(t)) dt,

...

1=
∫ t j

t j−1

Rj (T(t)) dt, (2)

...

1=
∫ tN

tN−1

RN(T(t)) dt.

Analytically, finding a closed-form solution fortN is not simple or even possible in
general circumstances, but from a computational perspective one simply integrates
to 1 repeatedly, saving the final result. The complications of rate curves and non-
constant temperature series would probably necessitate computational approaches
in any event.

Temperatures, of course, are rarely constant through the year. Takingt to be
measured in years, witht = 0 at the average yearly minimum temperature (say
January 30), a simple mathematical model for seasonal variation of temperature is
(following Taylor, 1981)

T(t) = T0− T1 cos(2π t). (3)
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In this equationT0 is the yearly average temperature andT1 is the size of the
seasonal contribution to yearly temperature swings. The behavior of yearly tem-
perature ismuchmore complicated than this, but as will be shown below this
minimal seasonality is enough to establish voltinism. Conversely, the additional
terms needed to improve the accuracy ofT(t) are not, within limits, sufficient to
destroy voltinism.

The sequence of equations (2), resulting intN , can be thought of as a map from
the interval [0,1] into itself. Ovipositional dates cycle from 0 to 1 and then repeat,
so solutions fortN are interpreted modulo 1. This creates the possibility for fixed
points and strong seasonality; iftN = 1+ t0 thent0 is an equilibrium solution for
oviposition corresponding to a univoltine cycle. Similarly, if

tN = m+ t0,

then t0 is an equilibrium for an1
m-voltine cycle. Thinking of equations (2) as a

circle map, therotation number, ρ (or mean fractional rotation around the circle
completed at each revolution) would be related tom by

ρ =
1

m
.

Unfortunately, irrational rotation numbers are much more frequent than rational
rotation numbers, and there is no reason to expect simple cycles at the outset.

The final portion of the required mathematical formalism is an assumption for the
shape of the rate curves. Over large temperature variations there is ample evidence
that the rate curve for particular life stages depends nonlinearly on temperature [see
Loganet al. (1976), and references quoted therein]. However, for an organism with
many life stages the actual temperature experienced during a particular life stage
varies less drastically. The simplest reasonable relationship that has been used to
model developmental rate during a paricular life stage is

Rj (T) = r j (T − θ j ) = r j [T0− θ j − T1 cos(2π t)]. (4)

In equation (4) the parametersr j andθ j are life stage specific constants;r j is the
linear rate of development for temperatures above threshold andθ j can be thought
of as the developmental threshold temperature for life stagej . For simplicity we
will assume throughout thatT0 − T1 ≥ θ j , so that the rate of aging never becomes
negative. However, as we will show later, the argument for direct temperature
control of seasonality is insensitive to truncatingRj (T < θ j ) = 0. In the next
section we will demonstrate how this argument procedes for an organism with only
two stages; egg and pre-ovipositional adult.



Seasonal Temperature Alone Can Synchronize Life Cycles 981

3. SYNCHRONIZATION IN AN ORGANISM WITH TWO L IFE STAGES

When we assume rate curves given by equation (4) andN = 2, equations (2) can
be integrated directly,

1= r1

[
(T0− θ1)(t1− t0)−

T1

2π
(sin(2π t1)− sin(2π t0))

]
,

1= r2

[
(T0− θ2)(t2− t1)−

T1

2π
(sin(2π t2)− sin(2π t1))

]
.

To determine conditions for the existence of anm-cycle in oviposition we must
examine these equations for solutions whent2 = m+ t0. Takingm to be a positive
integer (and therefore sin(2π(t0+m)) = sin(2π t0)) gives

1= r1

[
(T0− θ1)(t1− t0)−

T1

2π
(sin(2π t1)− sin(2π t0))

]
def
= f1(t0, t1), (5)

1= r2

[
(T0− θ2)(m+ t0− t1)−

T1

2π
(sin(2π t0)− sin(2π t1))

]
def
= f2(t0, t1). (6)

An 1
m-voltine cycle is given by intersections of the level curvesf1(t0, t1) = 1 and

f2(t0, t1) = 1.
In this case it is possible to solve analytically fort0. First, summing equations (5)

and (6) with respective weightsr−1
1 andr−1

2 yields

1

r1
+

1

r2
= r−1

1 f1+ r−1
2 f2 = m(T0− θ2)+ (θ2− θ1)(t1− t0). (7)

From this equation we see that anecessary conditionfor the existence of a solution
is θ2 6= θ1, that is, that the life stages have different developmental thresholds.
Otherwise we arrive at

m=
1

T0− θ2

(
1

r1
+

1

r2

)
,

which, sincem must be an integer, cannot be true for general choices ofT0, θ2

andr j .
Whenθ2 6= θ1 we can solve fort1 in terms oft0:

t1 = t0+
r−1

1 + r−1
2 −m(T0− θ2)

θ2− θ1︸ ︷︷ ︸
def
=β

.

Using this definition forβ, equation (5) becomes

1

r1
= β(T0− θ1)−

T1

2π
[sin(2π t0+ 2πβ)− sin(2π t0)],
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Figure 1. Transverse intersection and creation of fixed points in pairs for the two level
curves f1(t0, t1) = 1 (solid) andf2(t0, t1) = 1 (dashed). The ovipositional date,t0, is the
ordinate in each plot, while the date of egg hatching,t1, is the abscissa. Parameters were
chosen to beθ1 = 9, θ2 = 11, T0 = 15, T1 = 3.5 andr1 = 0.6. In moving from the
figure on the left to the figure on the right only the parameterr2 has been changed, from
0.32 on the left to 0.35 on the right. This illustrates the smooth movement of level curves
with changing parameters and the consequent creation of two fixed points, given by the
intersection between the two curves.

and using the cryptic trigonometric identity sin(x+2y)−sin(x) = 2 sin(y) cos(x+
y) yields

1

r1
= β(T0− θ1)−

T1

π
sin(πβ) cos(2π t0+ πβ).

Finally, this expression may be inverted fort0:

t0 = −
1

2
β +

1

2π
cos−1

[
π

T1
csc(πβ)

(
1

r1
+ β(θ1− T0)

)]
. (8)

In fact, equation (8) representspairs of solutions in the interval [0,1], since
the cosine function intersects any constant value twice if it intersects at all in the
interval [0,2π ]. This is consistent with the behavior of intersections of level curves
of two-dimensional functions. If it is possible that the level curvesf1(t0, t1) = 1
and f2(t0, t1) = 1 do not intersect for some parameter values and intersections
are created for other parameter values, then the intersections must be created in
pairs (see Fig.1). Moreover, the intersections created must be transverse inter-
sections if the behavior of the level curves depends continuously on parameters.
Since the functionsf1 and f2 exhibit polynomial dependence on their parameters,
the generic behavior of their level curves will be smooth with parametric changes.
We conclude that fixed points will exist for neighborhoods of parameter values,
that generically fixed points are transverse intersections of level curves, and are
therefore structurally stable.

Recall that we are searching for ovipositional fixed points,t0, indicating season-
ality, in what is essentially a circle map on the interval [0,1], modulo 1. When iso-
lated fixed points are created for circle maps (or iterations of circle maps), the fixed
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points must be created in stable–unstable pairs (Guckenheimer and Holmes, 1983).
While this result is the subject of theorems going back toArnold and Avez (1968),
intuitively it is fairly clear. Consider a sequence of ovipositional dates generated by
integrating equations (2) recursively, starting witht0

set
= tn

0 and calculating the next
generation’s ovipositional date usingtn+1

0 = t2 −m for an 1
m-voltine species. The

sequence of ovipositional dates{tn
0 }
∞

n=0 must contain a monotone convergent sub-
sequence,{tnk

0 }
∞

k=0, because it is completely contained in the interval [0,1]. Without
loss of generality, let us assume that this subsequence is increasing. The conver-
gent subsequence must limit on a fixed point, and therefore one of the fixed points
given by equation (8). Now consider the fate of eggs which are laid in any interval
[tnk

0 , t
nk+1
0 ]. The future ovipositonal dates for all initial conditions within the inter-

val are trapped within future intervals[t
nk+ j

0 , t
nk+ j+1

0 ], and both interval endpoints
converge to a fixed ovipositional date given by equation (8). Because the right-
most endpoint of the last interval is the left-most endpoint of the next interval, a
continuum of ovipositional dates must converge to what is an attracting oviposi-
tional cycle. Since some ovipositional dates must converge from above and others
from below, the second solution of the pair must be an unstable fixed point.

Finally, this behavior is structurally stable due to the transverse intersection
which generates the fixed points (Guckenheimer and Holmes, 1983). As a con-
sequence, ‘nearby’ similar systems will have the same properties for neighbor-
hoods of their associated parameters. This holds true not only for two-stage or-
ganisms with nonlinear rate curves and more complex temperature series, but also
for N-stage organisms in which the influence of all but two life stages is rela-
tively small. This suggests that our results for two-stage organisms are generic,
and that we can expect direct temperature control of seasonality in a spectrum of
organisms. In addition, structural stability implies that the same organism should
enjoy strong seasonality for a range of temperature regimes, including environ-
ments in which temperatures are not perfectly periodic. In fact, the results of
simulations byLogan and Bentz (1999), using realistic temperature series, indi-
cate that this is the case. The hypothesis that multi-stage organisms can experi-
ence direct control of seasonality will be examined in greater depth in the next
section.

4. THE EXISTENCE AND STRUCTURAL STABILITY OF CYCLES FOR

N-STAGE ORGANISMS

The situation forN life stages differs only in that no analytic solution is generally
possible. However, given that the goal is only to exhibit the existence and structural
stability of seasonal cycles this is not too great a handicap. To begin, using the
linear rate hypothesis in equation (4) and the simple form for seasonal temperature
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variation, each of theN equations (2) can be integrated directly:

1= r1

[
(T0− θ1)(t1− t0)−

T1

2π
(sin(2π t1)− sin(2π t0))

]
,

...

1= r j

[
(T0− θ j )(t j − t j−1)−

T1

2π
(sin(2π t j )− sin(2π t j−1))

]
, (9)

...

1= r N

[
(T0− θN)(tN − tN−1)−

T1

2π
(sin(2π tN)− sin(2π tN−1))

]
.

An 1
m-voltine fixed oviposition cycle satisfies

tN = m+ t0, (10)

which gives a system ofN + 1 equations withN + 1 unknowns,t0, t1, t2, . . . ,
tN−1, tN . Thinking of equations (9) and (10) as level surfaces, the situation looks
promising: if (N + 1) surfaces intersect in an(N + 1)-dimensional space they
generically intersect transversely, at distinct points. In this section we will show
that the surfaces intersect transversely for nontrivial circumstances.

Each of equations (9) can be written in the form

1

r j
= g j (t j )− g j (t j−1), (11)

where

g j (t) = (T0− θ j )t −
T1

2π
sin(2π t).

Provided

g′j (t j ) = (T0− θ j )− T1 cos(2π t j ) 6= 0, (12)

we may write a formal inverse for each life stage:

t j = g−1
j

[
1

r j
+ g j (t j−1)

]
. (13)

Condition (12) is satisfied by assuming(T0 − T1) > θ j , which means that the
lowest yearly temperature stays above the developmental threshold for each life
stage. This is no additional requirement at all; for the simple linear rate (4) to stay
nonnegative we have precisely the same requirement.
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N
t t0= m +

t0
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Solution for seasonal
ovipositional cycle

G(0)

0

Figure 2. Illustration of the plan for showing transvserse intersection of level curves in the
N life stage system. The composite function for finding time of adulthood,tN , in terms
of oviposition timet0 is shown in solid. The condition for1m-voltinism, tN = m + t0,
is shown as a dashed line. IfG(0) > m andG′(t) < 1, then the two curves must cross
transversely and an1m-voltine cycle of oviposition is possible.

Using equation (13) we can invert system (9) recursively, writingtN in terms of
t0:

tN = g−1
N

[
1

r N
+ gN

(
g−1

N−1

[
1

r N−1
+ gN−1

(
g−1

N−2

[
1

r N−2
+ · · ·

+g−1
2

[
1

r1
+ g2(g

−1
1 [t0])

]])])]
def
= G(t0).

The problem of general transverse intersection now becomes to show that the two
curves

tN = G(t0) and tN = m+ t0

cross one another at a nonzero angle. Sufficient conditions for this crossing are:

(i ) G(0) > m, and

(i i ) G′(t) < 1 for t > 0.

Below we will show that these two conditions are met for not-too-strenuous re-
strictions on the parameters.

Addressing condition(i i ) first, derivatives ofg−1
j can be calculated directly,

d

dt
g−1

j [g j (t)] =
1

g′j (t)
=

1

T0− θ j − T1 cos(2π t)
.
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Since the cosine function is always bounded between±1 we may write a bound on
the derivative

d

ds
g−1

j [s] ≤
1

T0− θ j − T1
. (14)

It is now possible to determine a bound on the derivatives ofG,

dG

dt0
≤

N∏
j=1

1

T0− θ j − T1
.

Therefore
N∏

j=1

(T0− θ j − T1) > 1

is sufficient to insure thatG′(t0) < 1 always.
Now we show that it is simultaneously possible forG(0) > m. Summing allN

of equations (9) with weightsr−1
j and using equation (10) gives

N∑
j=1

1

r j
= tN · (T0− θN)− t0 · (T0− θ1)+

N−1∑
j=1

t j · (θ j+1− θ j )

−
T1

2π
[sin(2π(m+ t0))− sin(2π t0)]. (15)

We may isolatetN on one side of equation (15) to get

tN(T0− θN) = t0(T0− θ1)+

N∑
j=1

1

r j
+

T1

2π
[sin(2π(m+ t0))− sin(2π t0)] − A,

where

A =
N−1∑
j=1

t j · (θ j+1− θ j ).

If A < 0 we may write

tN ≥ t0
(T0− θ1)

(T0− θN)
+

1

(T0− θN)

N∑
j=1

1

r j
+

T1

2π(T0− θN)
[sin(2π(m+t0))−sin(2π t0)].

At t0 = 0,

tN ≥
1

(T0− θN)

N∑
j=1

1

r j
+

T1

2π(T0− θN)
sin(2πm) ≥

1

(T0− θN)

N∑
j=1

1

r j
. (16)
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The latter inequality follows fromm either an integer (so sin(2πm) = 0) orm≤ 1
2

(so sin(2πm) > 0). Simply requiring the right-hand side of equation (16) to be
greater thanm at t0 = 0 will satisfy condition(i ).

The conditionA < 0 is itself testable, but hard to express in biologically mean-
ingful terms. However, consider the following. If we define the mean aging time,
t̄ = 1

N

∑
t j , then we may rewriteA:

A = t̄(θN − θ1)+

N−1∑
j=1

(t j − t̄) ·1θ j+1,

where1θ j = (θ j − θ j−1) is the change in developmental threshold from the pre-
vious life stage. This quantity has zero mean, and consequently the summation
term in A is proportional to the covariance of thet j and1θ j+1. Supposing for a
moment thatθN = θ1, then life stages completingbeforethe mean developmental
time (t j < t̄) should coincide withdecreasingjumps in developmental thresh-
old (1θ j+1 < 0). Inversely, life stages completingafter the mean developmental
time (t j > t̄) should coincide withincreasingjumps in developmental threshold
(1θ j+1 > 0). Therefore, for a poikiliothermic organism in which early life stages
generally coincide with decreasing developmental thresholds and later life stages
generally coincide with increasing developmental thresholds, we have shown that
condition(i ) is satisfied.

This is biologically relevant, since it is often empirically possible to determine
the sequence of developmental thresholds for a particular organism. Mathemati-
cally it is not satisfying since thet j are not explicit and, in fact, are part of the
calculation fort0, which we are trying to show actually exists. However, it is clear
that t j is inversely related tor j ; T0 − T1 > θ j and equation (12) indicates thatg j

has a positive derivative and equation (13) then shows thatt j must grow withr−1
j .

In fact, our earlier derivative estimates (14) give

t j ≤ t j−1+
r−1

j

T0− θ j − T1
≤ · · · ≤

j∑
i=1

r−1
i

T0− θi − T1
.

Using this fact and telescoping the summation inA, we find

A≤
θN − θ1

r1(T0− θ1− T1)
+

θN − θ2

r2(T0− θ2− T1)
+ · · · +

θN − θN−2

r N−2(T0− θN−2− T1)

+
θN − θN−1

r N−1(T0− θN−1− T1)
.

This means that it is possible to boundA < 0 (and therefore use condition (16) to
forceG(0) > m) in a variety of ways. For example, supposeθ j ≈ θ̄ except for a
particular stage,k, for whichθk 6= θ̄ . Then

A ≤
θ̄ − θk

rk(T0− θk − T1)
,
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andθk > θ̄ is sufficient to giveA < 0. In fact, (16) becomes

G(0) >
1

(T0− θ̄ )

N∑
j=1

1

r j
,

and a sufficient condition forG(0) > m in this case is just that

N

r̂
def
=

N∑
j=1

1

r j
> m(T0− θ̄ ). (17)

As it turns out equation (17) also has a biological interpretation. The quantityr̂ is
theharmonic averageof the developmental times, and(T0− θ̄ ) is the mean temper-
aturein excessof the averaged developmental threshold. Sincem is the number of
years in an ovipositional cycle andN is the number of life stages to complete, (17)
is really a statement relating a particular kind of developmental averaging, the total
temperature available for development inm years, and the number of life stages.
That is, if we reorganize (17),

‘Aging’ required︸ ︷︷ ︸ = Harmonic average rate︸ ︷︷ ︸ × Average temperature
in m years︸ ︷︷ ︸

N = r̂ × m(T0− θ̄ ).

All that is required for such an organism to exhibit strong seasonality is that the
harmonic average rate of development,r̂ , be great enough to complete allN life
stages with the average available developmental temperature inm years.

It should be noted that nothing about this argument requires thatm be an inte-
ger. For example, ifm = 1

2 then the conditions above are sufficient to determine
whether or not an organism is bi-voltine. In fact, (17) can be used to distinguish bi-
furcations among a variety of possibilities. TakingT0 to be a bifurcation parameter
andr̂ to be given for a particular organism, then uni-voltine seasonality is predicted
by (17) when

T0 ' T1-volt
def
= θ̄ +

N

r̂
. (18)

However, as the mean temperature increases it passes some critical temperature
and enters a regime in which

T1-volt < T0 ' T2-volt
def
= θ̄ + 2

N

r̂
. (19)

In the vicinity of T2-volt the theory predicts the existence of two generations per
year, bi-voltinism. Clearly it is possible to extend the argument to predict regions
of k = 1

m-voltinism:

Tk-volt
def
= θ̄ + k

N

r̂
. (20)
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This provides a simple and direct method for predicting how seasonality may
change as organisms spread to warmer/cooler latitudes or as the climate itself
changes.

We have shown that fixed ovipositional cycles exist for simple linear develop-
ment models forN-stage poikiliothermic organisms and simple seasonal temper-
ature dependence. Since the solution fort0 is the result of transverse intersection
of level curves it is structurally stable. We therefore expect strong seasonality in
complex systems sufficiently similar to the simplistic system. It is not clear just
how far ‘sufficient similarity’ can be pushed. Certainly more complex temperature
cycles would not destroy the behavior we are analysing, provided the deviations
from seasonal swings are not ‘too’ large. Nonlinear rate curveswouldbe included
if the nonlinearities are not ‘too’ extreme in the temperature regimes an organ-
ism experiences during its various life stages. Exactly what ‘too’ means cannot
be determined at this point. However, direct temperature influences can certainly
produce strict seasonality in an exothermic organism, independent of other syn-
chronizing influences. In the next section we will show that this is, in fact, the case
for the MPB.

5. APPLICATION TO MPB

The MPB (Dendroctonus ponderosaeHopkins (Coleoptera: Scolytidae)) is a
widely distributed native insect that attacks pine forests throughout the western
United States. In general, a tree can only be colonized after a synchronized attack
by hundreds or thousands of individuals. In addition to synchronous emergence,
adults must maximize reproductive effort over the short time during which freez-
ing temperatures do not occur in their mountain environments (Amman and Cole,
1983). These factors create a clear selective pressure for strict seasonality. In-
terestingly enough, in spite of extensive research and rearing experience with this
species, no evidence for diapause or other physiological timing mechanism has
been found (Wygant, 1942; Reid, 1962; Safranyik and Whitney, 1985; Logan and
Amman, 1986). Rather, it seems as though seasonality is under direct temperature
control. Due to their extensive geographical range, realistic mean temperatures for
this species span the gamut of possibilities. Since there is no current evidence for
diapause, the theory developed in the previous sections should predict a variety of
seasonalities. Moreover, the actual phenology of MPB is much more complicated
than the linear hypothesis we have used to develop the theory, as are the actual
developmental temperatures encountered. Therefore, this species also provides an
opportunity to determine the strength of the results presented above. Are these
multi-voltine cycles structurally stable enough to exist for an organism with seven
life stages, cool-temperature thresholds, and differing nonlinear and linear devel-
opmental rates in each life stage?

Nonlinear and linear development rate curve parameters for the seven MPB life
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Table 1. Parameters for linearized rates of development for the MPB, including a devel-
opmental threshold,θ j . Temperatures are measured in◦C, while developmental ratesr j
have units of inverse degrees per year.

Developmental stage Developmental threshold Linear rate

Egg θ1 = 7.5394 r1 = 4.198
First larval instar θ2 = 8.6358 r2 = 10.695
Second larval instar θ3 = 9.6322 r3 = 10.439
Third larval instar θ4 = 8.0342 r4 = 3.468
Fourth larval instar θ5 = 10.9543 r5 = 3.650
Pupae θ6 = 11.7555 r6 = 6.278
Ovipositional adult θ7 = 1.7929 r7 = 1.278

stages were estimated previously (Logan and Amman, 1986; Bentzet al., 1991;
Logan and Bentz, 1999) (see Fig.3). To apply the theory developed above, we
linearize the nonlinear rate curves and estimate a lower temperature threshold for
development (see Table1). Determining true development thresholds for this in-
sect in laboratory experiments has proven difficult. Larvae feed and develop within
the cryptic habitat of tree phloem. It is extremely difficult to maintain an appro-
priate environment for the length of time required to monitor development at low
temperatures. Due to these problems, our current best estimate of low-temperature
development thresholds for this insect are those derived from the nonlinear rate
curves. Our goal in this section is to examine the predictions of the theory devel-
oped in the previous section, not to re-create the actual phenological attributes of
the MPB’s life cycle.

Structural stability will be examined in two generalizations of the linear, above-
threshold developmental model. In the first case, the development with linearized
rate curves (including developmental thresholds) will be examined for tempera-
tures passing below developmental thresholds. This will show that introducing
realistic developmental thresholds does not destroy the stability of seasonality anal-
ysed above (in fact it strengthens seasonality). In the second case we use the fully
parameterized, nonlinear development curves to illustrate that the nonlinearity of
the rate curves does not remove seasonality. The empirical rate curves correspond-
ing to (2) are integrated numerically using the trapezoid rule with hour-long time
steps, generating ovipositional dates for the next generation (tN) as a function of
ovipositional dates in the current generation (t0). The full MPB model is the same
as that used inLogan and Bentz (1999). By simply iterating the ovipositional map
for many generations we are able to determine which seasonal cycles, if any, are
attracting.

Temperatures will be modelled using a truncated Fourier series (followingTay-
lor, 1981)

T = T0− T1 cos(2π t)− T365cos(730π t). (21)

The behavior of the phenology model will be examined as the energy in the mean
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Figure 3. Actual estimated rate curves for MPB (solid) and simple linear approximations
(dashed) with developmental thresholds and linear rates of development. From left to
right, top to bottom the curves represent rates of development for: (a) eggs, (b) first larval
instar, (c) second larval instar, (d) third larval instar, (e) fourth larval instar, (f) pupae and
(g) ovipositional adults. Open circles represent developmental data, while ‘×’ represent
data selected to parameterize a purely linear representation of the developmental rate.

(T0), seasonal (T1) and daily (T365) temperature modes is varied. A particular ex-
ample of such a temperature series is shown in Fig.4.

The numerical case studies will be organized by the conditions fork-voltinism
discussed in the previous section. For MPB the two averaged quantities,r̂ and θ̄
are

r̂ = 3.62325(◦C-year)−1 and θ̄ = 8.33483◦C.

Using equation (20) with N = 7 generates predictions for seasonality, which are
summarized in Table3. Predicted temperatures range from 9.3◦C for a semivoltine
cycle to 20◦C for hexavoltine seasonality. In general the parameters for the MPB
‘pass’ the qualitative criteria discussed in the previous section. In particular, the
pupal stage has a developmental threshold with highest positive deviation from the
mean threshold,̄θ . Consequently we expect that a variety of seasonalities will be
possible for the MPB life system.

Of the seven temperature regimes in Table3, the semi-, uni- and bi-voltine cases
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Figure 3. Continued.

are not relevant to the simple linear theory. In each of these cases the mean temper-
ature threshold is below the highest developmental threshold (θ6 = 11.75). Con-
sequently our investigations below will be conducted in a high mean-temperature
regime; unrealistically high, from the standpoint of the actual temperature envi-
ronment experienced by the MPB. However, the goal of this work is not to predict
seasonality for MPB, but to establish that temperature alone is sufficient to synchro-
nize the life cycles of poikiliothermic organisms. The MPB is simply a test-case
with established rate curves, thresholds, and lack of diapause.

5.1. Linear rates and realistic development thresholds.To examine the struc-
tural stability of the predicted seasonality under the influence of true developmental
thresholds we integrated equation (1) with linear rates and thresholds as depicted
in Fig. 3. The mean yearly temperature was chosen to beT0 = 14.2, squarely in
the regime of tri-voltine cycles. Seasonal and daily temperatures were chosen in
the rangesT1 ∈ [2,10] andT365 ∈ [2,8]. The computational model was integrated
with arbitrarily chosen initial conditions for at least 100 generations of develop-
mental time, and the sequence of oviposition dates were examined for seasonality.
For each choice ofT1, T365 the number of generations per year at the end of the
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Table 2. Functional forms and parameters for the nonlinear developmental rate curves for
MPB [following Logan (1988)]. Graphical versions are plotted in Fig.3. The four larval
instars are indicated by ‘L1,2,3,4’. Parameters were estimated using observations discussed
in Logan and Bentz (1999). For temperatures at which the given functions become negative
the rate of development is taken to be zero. In the case of the third larval instar,R4(T) = 0
for T < 7.9046. Developmental rates (p1) are given in units of per year, per◦C; other
parameters are directly proportional to◦C or inverse◦C, as appropriate.

Stage Functional form p1 p2 p3 p4 p5

Egg p1

(
1

1+ p2 exp[−p3(T − 5)]
− exp

[
(T − p4)

p5

])
114.90 19.93 0.20 34.60 4.89

L1 p1

(
1

1+ p2 exp[−p3(T − 5)]
− exp

[
(T − p4)

p5

])
251.38 57.28 0.30 30.22 4.60

L2 p1

(
1

1+ p2 exp[−p3(T − 10)]
− exp

[
(T − p4)

p5

])
130.01 18.01 0.48 29.36 3.47

L3 p1

(
(T − p5)

2

p2
4 + (T − p5)

2
− exp

[
(T − p2)

p3

])
69.68 19.70 0.15 8.77 7.90

L4 p1(T − p2) 3.65 10.95

Pupae p1(T − p2) 6.28 11.76

Adult p1

(
exp[p2(T − p4)

p3] − exp

[
(T − p4)

p5

])
4.90 0.019 1.54 2.00 0.80

simulation (possibly large) were recorded. A contour plot of these seasonalities
is presented in Fig.5. The region of tri-voltinism extends well past the thresh-
old developmental temperatures, which illustrates the structural stability of the
theoretical predictions. In general, one may hypothesize that the cycles are even-
tually de-stabilized by the high temperatures during the summer, which in the end
put so much developmental energy into the system that 3 generations per year are
simply too few, generating a temperature regime of a-synchronous fractional vol-
tinism. Eventually, as temperatures are increased still further, a 4-generation per
year set of cycles become stable and attracting, as indicated in the figure.

5.2. Nonlinear rates. To examine the structural stability of the predicted sea-
sonality under the influence of nonlinear rate curves as well as realistic develop-
mental thresholds we integrated equation (1) with nonlinear rates and thresholds
as depicted in Fig.3. The mean yearly temperature was chosen to beT0 = 14.2,
squarely in the regime of tri-voltine cycles. Seasonal and daily temperatures were
chosen in the rangesT1 ∈ [2,8] andT365 ∈ [2,10]. The computational model was
integrated with arbitrarily chosen initial conditions for at least 100 generations of
developmental time, and the final 50 generations were examined for seasonality.
For each choice ofT1, T365 the number of generations per year at the end of the
simulation (possibly large) were recorded. A contour plot of these seasonalities is
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Figure 4. Example temperature seriesT = T0 − T1 cos(2π t) − T365cos(730π t) includ-
ing mean (‘*’, T0 = 10), seasonal (‘·’, T1 = 8) and daily (‘–’, T365 = 5) temperature
components. In the numerical studies the seasonal (T1) and daily (T365) components of
temperature are varied (independently) so that the total temperature drops below develop-
mental thresholds. The independent axis,t , is measured in fractions of a year after the
minimum seasonal temperature.

presented in Fig.6. In this figure it is clear that there are two basic seasonalities,
a tri-voltine (k = 3) cycle as well as a quadri-voltine (k = 4) cycle. These are the
basic seasonalities exhibited by the linear developmental model in the same tem-
perature regime. The continued existence of cycles in the case of nonlinear curves
and realistic developmental thresholds illustrates that cycles predicted by the lin-
ear, no-threshold theory are structurally stable. It is interesting to note that daily
fluctuations stabilize the expression of seasonality, as indicated by the concavity of
the bands of adaptive seasonality.

5.3. Discussion. The purpose of the two case studies presented above is to
illustrate the structural stability of the cycles proven to exist in the linear rate, no-
threshold model. In fact the cycles persist nicely in both linear and nonlinear cases
when thresholds are included. In both cases we studied a very high-temperature
regime, to facilitate comparison with the no-threshold theory. One might expect
that here cycles would beleaststable—there is too much developmental energy
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Table 3. Mean yearly temperatures which result in differing numbers of generations per
year for the MPB, using linear rate curves and parameters summarized in Table1.

Generations/year,k m= 1
k Mean temperature,Tk-volt

1/2 2 9.3008
1 1 10.2668
2 1/2 12.1988
3 1/3 14.1307
4 1/4 16.0627
5 1/5 17.9947
6 1/6 19.9266

around for simple cycles to stay stable. In a low-temperature regime numerical
investigations [seeLogan and Bentz (1999), for details] indicate patterns of semi-,
uni- and bi-voltine cycles that are structurally similar to the results we present
here. On the basis of the theory discussed above this seems reasonable. When the
temperature goes below threshold no development occurs, corresponding to the re-
gion in whichG′(t0) = 0. Since the existence and stability of cycles hinges on
the notion of making the average slope ofG smaller than one, it seems clear that
developmental thresholds should strengthen, rather than weaken, cycles.

The boundaries of the two regions displaying tri- and quadri-voltine cycles in
Figs5 and6 are quite complicated. While the figures were plotted using discretiza-
tions of 0.2 ◦C, we have used discretizations as small as 0.05 ◦C in selected regions
including the boundaries and the complications persist or increase. It may be that
these boundaries are essentially fractal, although we have not begun to perform
enough simulations to test this hypothesis. The reasons for this complication are
tied to the existence of true developmental thresholds in both the linear and nonlin-
ear models. The functiontN = G(t0), which describes the time of completion of
the final (Nth) life stage in terms of oviposition time (t0), need not be continuous
when temperatures pass through a developmental threshold. To see this, imagine
the developmental trajectories of two eggs laid one day apart. Suppose the first egg
just completes development the day before temperatures pass through the theshold
for egg development. The second egg will be halted before it completes develop-
ment, and will not hatch until somewhat later in the year, when temperatures rise
back through the egg’s developmental threshold. In the meantime, the first egg has
made it into later instars which may or may not have developmental stops. In any
event, the trajectories of these two eggs have diverged, perhaps by as much as an
entire half year, in spite of their initial proximity. Thus, when temperatures pass
through thresholdsG(t0) does not need to be continuous. A direct consequence
of this fact is that the voltine boundaries, which are smooth for temperatures stay-
ing above threshold, do not continue smoothly when temperatures fall through the
developmental thresholds.

The areas of asynchronous, fractional voltinism resulting from both the linear
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Figure 5. Numerically calculated sesonality for linear rate curves with realistic devel-
opmental thresholds. The mean temperature isT0 = 14.2; daily (T365) and seasonal (T1)
temperatures vary from 2 to 10 and 2 to 10, respectively. Except for the lower left corner of
the plot all temperatures pass below developmental thresholds. The region of tri-voltinism
(with k = 3) persists well beyond where temperatures cross the threshold, illustrating the
structural stability of the three cycles. For largerT365 andT1 a region of quatri-voltinism
also exists. These two regions of synchrony are separated by a region in which ovipo-
sitional cycles were not an integer number per year, indicating asynchronous fractional
voltinism for these temperature regimes.

and nonlinear case studies (see Figs5 and6) can be interpreted as phase transitions
that are maladaptive for this insect. These areas represent transition zones between
strict uni-, bi- and multi-voltinism in which population synchrony is disrupted,
thereby possibly limiting population expansion [seeLogan and Bentz (1999)].
These and similar results will be pursued in future work.

6. CONCLUSION

In this paper we have proven that it is possible for seasonal temperature variation,
coupled with differing developmental thresholds for different life stages, to syn-
chronize the seasonality of a poikiliothermic organism. The two basic conditions
under which direct temperature control creates seasonality are: (1) that sufficient
developmental energy exists to move throughN life stages in a season (half- or
two-seasons, as the case may be), and (2) that at least one of the developmental
thresholds is significantly above the mean threshold,θ̄ . These two general criteria



Seasonal Temperature Alone Can Synchronize Life Cycles 997

2
0

1

2

3

4

Voltinism (generations per year) 

Asynchronous fractional
voltinism

k = 3

k = 4

T
36

5

5

6

7

8

3 4 5 6

T1

7 8 9 10

Figure 6. Numerically calculated sesonality for nonlinear rate curves with true develop-
mental thresholds. The mean temperature isT0 = 14.2; daily (T365) and seasonal (T1)
temperatures vary from 0 to 8 and 2 to 10, respectively. Except for the lower left corner of
the plot all temperatures pass below developmental thresholds. Regions of adaptive sea-
sonality (in this case a tri- and quatri-voltine band) are separated by bands of asynchronous
fractional voltinism.

determine conditions under which seasonal temperature variations will create fixed
points in the generational circle map from ovipositional date to ovipositional date.

There are many suggestive implications of this theoretical result. Many organ-
isms exhibit no obvious physiological timing mechanism (such as diapause, hi-
bernation, or estivation), yet pursue life strategies which make them dependent on
synchrony with conspecifics. Examples are as various as terrestrial and aquatic
insects, pollinating plants, bacteria and fungi, amphibians and fish. It is often hy-
pothesized that some unknown environmental cue and physiological mechanism
provides the biofix. A more parsimonious explanation may be direct temperature
control of seasonality. Nobody doubts that rates of development vary with differ-
ent life stages and different temperatures, nor that there are thresholds for each life
stage below which no development occurs. In this paper we have demonstrated
that these mechanismsaloneare sufficient to create voltinism in the presence of
seasonal temperature variations, and that the resulting cycles are very stable.
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